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We derive norm bounds that imply the convergence of perturbation theory in
fermionic quantum field theory if the propagator is summable and has a finite
Gram constant. These bounds are sufficient for an application in renormaliza-
tion group studies. Our proof is conceptually simple and technically elementary;
it clarifies how the applicability of Gram bounds with uniform constants is
related to positivity properties of matrices associated to the procedure of taking
connected parts of Gaussian convolutions. This positivity is preserved in the
decouplings that also preserve stability in the case of two-body interactions.

KEY WORDS: Fermions; perturbation expansions; Gram estimates; renor-
malization group.

1. INTRODUCTION

In fermionic field theories with an infrared and an ultraviolet cutoff, pertur-
bation theory converges. Perturbation theory in bosonic theories always
diverges. When representing the perturbation series in terms of Feynman
graphs, this is often stated in the way that, although there are as many
Feynman graphs contributing to the fermionic perturbation expansion as
to the bosonic one, there are sign cancellations due to the fermionic
antisymmetry that lead to convergence. This explanation is correct, but it
is another matter to make the cancellations explicit in a way that one can
use them to remove the cutoffs in nonperturbative constructions of
fermionic models. This was done for the Gross�Neveu model in refs. 1
and 2. Recently, there have been various results that make these arguments
more explicit(6, 7) and further simplify them, in particular by avoiding
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cluster-expansion type arguments.(3�5) Our results go in the same direction,
but we believe that they provide an additional structural understanding of
how the sign cancellations occur and further reduce the technicalities in the
proofs. In our proof, we do not need to expand in Feynman graphs or deal
with combinatorial identities that go beyond the most standard tree graph
techniques.

The basic reason for convergence is that correlation functions of
fermions are determinants of a matrix whose entries are given by the
covariance. In contrast to the permanents of bosonic theory, which grow
factorially, such determinants are usually bounded by a constant to the
degree of the monomial that is integrated. The ``usually'' is made more
precise in the case where Gram bounds apply.

It would be overly optimistic to assume that a connected correlation
function can also be represented as a determinant. This is because a deter-
minant is a sum over permutations, and permutations decompose the index
set into partitions (the cycles). The sum over all permutations always
contains some where the vertex structure of the graph does not connect all
different cycles, and then the associated graph in the Feynman graph
expansion is not connected. Thus the connected correlation functions,
which receive contributions only from connected graphs, cannot simply be
determinants. However, if one takes out a minimal connected subgraph,
namely a tree, and sums over graphs that contain this tree, one can hope
to get back a determinant. Moreover, because the number of tree graphs
is much smaller than that of all graphs, a tree sum representation is a good
starting point for a convergence proof.

One simple way to do the resummation, which we shall describe below
because it was at the beginning of this work, is a resummation of the
Mayer graphs for the generating functional of the connected Green func-
tions in terms of trees, in the way proposed by Penrose a long time ago.(11)

This provides a resummation of Feynman graphs and thus clarifies which
graphs get combined to determinants. But although a Gram bound applies
to every term in the sum over trees, the Gram constant depends on the tree
and we have no uniform bounds for it yet (although they may be possible).
The investigation for the reasons for this problem led us in a natural way
to a positivity condition which implies uniformity, and in fact, optimal
Gram constants.

A priori, positivity plays no role in the definition of fermionic theories
(unlike the bosonic case, where only positive covariances give well-defined
Gaussian measures). In particular, fermionic covariances of physically
interesting models do not have any positivity properties. Thus it may
appear surprising that a positivity condition plays a role in such theories.
What is really required is, however, not the positivity of the covariance but
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that of a connectivity matrix that appears in the tree representation of the
connected correlation functions. It turns out that this positivity condition
is precisely equivalent to the condition for two-body interactions that
stability be preserved in the decoupling expansion for the connected
correlation functions.

This explains, at least partially, why the applicability of Gram bounds
is fragile in that it is usually destroyed by expansion methods that are not
arranged carefully, and it also implies that a Brydges�Battle�Federbush
(BBF) representation, which preserves stability and hence positivity, leads
to uniform Gram estimates. Indeed, it is optimal in that the Gram constant
simply remains the same as before.

We apply the Gram estimates to show norm bounds that are simple
but strong enough to study renormalization group flows and to construct
fermionic models nonperturbatively.

After finishing our proof, we discovered that Lesniewski(12) had found
an explicit Gram representation for the BBF decoupling and used it to
prove cumulant bounds. The advantage of our method is that the positivity
condition makes it obvious why the Gram bounds work by a nontechnical
argument, and thus provides a conceptually and technically simple proof,
in which details of explicit representations (such as Lesniewski's Gram
representation, which almost appears as a miracle at first sight) are not
needed.

In Section 2, we give the precise setup and state the main analyticity
theorem. Section 3 contains its proof and the formulas for the connected
correlation functions. In Section 4, we discuss the results and some rela-
tions to other approaches.

We have written this paper so that it should be understandable for
non-experts. We assume only that the reader is familiar with operations on
finite-dimensional Grassmann algebras and some elementary notions of
graph theory, as well as the basic connectedness formulas of polymer
expansions. All these prerequisites are well-documented, see e.g., refs. 8, 9,
and 10 for polymer expansions and Appendix B of ref. 10 for Grassmann
algebras.

2. THE SETUP AND THE MAIN RESULT

2.1. The Gram Bound

To do combinatorics with generating functions, it is convenient to
introduce a discretization, i.e., a space-time lattice even in the theory with
a cutoff (we shall follow the conventions of ref. 10). Our formulas allow us
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to take the continuum limit (at fixed momentum space cutoff ) in our
representation of the connected correlation functions. For the estimates, it
does not make any difference if the lattice is kept or not.

For the moment, we just assume that the Grassmann algebra is
generated by fermionic fields �(X ), �� (X ), where X # X and X is a finite set.
A typical example for X is a lattice times a set of colour and spin indices.
We write sums over X (possibly times a scaling factor, such as a power of
a lattice spacing) as �X dX or briefly � dX and denote by $X (X, Y ) the
Kronecker delta on X, scaled such that � dX f (X ) $X (X, Y )= f (Y ). The
Grassmann derivatives $�$�(X ) anticommute and are normalized such that
$�$�(X ) �(Y )=$X (X, Y ). For another family of Grassmann variables
'(X ), we denote (�, ')=� dX �(X ) '(X ); by the Grassmann nature of the
fields, (�, ')=&(', �). To a fermionic bilinear form

(�� , C�)=| dx dy �� (x) C(x, y) �( y) (1)

we associate a Gaussian expectation value on the Grassmann algebra by
defining

(e('� , �)+(�� , ')) =| d+C(�) e('� , �)+(�� , ')=e('� , C') (2)

(the source terms being Grassmann variables as well). The elements of the
Grassmann algebra are polynomials

V(�)= :
m, m� �0

| dm� X
�

dmX
�

$ vm� , m(X
�
, X

�
$) �� m� (X

�
) �m(X

�
$) (3)

where X
�

=(X1 ,..., Xm) and �m(X
�

)=�(X1) } } } �(Xm). The sums over m and
m� are finite sums because of the nilpotency of the Grassmann variables.
The coefficient function is chosen antisymmetric under permutation of the
X variables and antisymmetric under permutation of the X$ variables
because any other part of it would cancel out in (3). We call V even if
vm� , m=0 unless m+m� is even (this is in particular the case if vm� , m=0
unless m=m� , but we do not need this more special condition here). If V
is even, it commutes with all other elements of the Grassmann algebra.
Here and in the following, the notation V(�) means that V is a polynomial
in � and �� (similarly, � d+C(�) also involves integration with respect to �� ).

The basic reason for the convergence of fermionic perturbation expan-
sions is the fermionic antisymmetry. The Gaussian integral of a monomial
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is zero unless there are as many �� as � in it. In that case, it is the deter-
minant

�`
p

l=1

�� (Yl) `
p

k=1

�(Xk)�=(&1) p( p+1)�2 det(C(Xk , Y l))k, l (4)

We assume that the propagator can be written as an inner product on
some Hilbert space H, that is,

\X # X _fX , gX # H: C(X, Y )=( fX , gY)
(5)

and _#C>0 \X # X: & fX &�#C , &gX &�#C

Then the Gram bound for the determinant (see, e.g., ref. 10, Appendix B.4).
implies

}�`
p

l=1

�� (Y l) `
p

k=1

�(Xk)�}�#C
2p (6)

For models of quantum field theory, a representation (5) typically holds
with a finite Gram constant #C if cutoffs are present.

2.2. Gaussian Convolutions

For h>0, we define the seminorm &V&h of an element of the
Grassmann algebra given by (3) by

&V&h= :
m, m� �0

m+m� �1

|vm� , m | hm� +m (7)

where |vm� , m | is the standard norm

|vm� , m |= max
i # Nm� +m

sup
Xi

| `
j{i

dXj |vm� , m(X1 ,..., Xm� +m)| (8)

We do not assume translation invariance. We assume that the norm of C
is finite: there is a constant |C such that

|C |=max {sup
X

| |C(X, Y )| dY, sup
X

| |C(Y, X )| ) dY =�|C #C
2 (9)

On the full Grassmann algebra, & }&h is only a seminorm because the term
m� =m=0 is left out in (7) and thus all constant polynomials K have
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&K&h=0. On the subspace of Grassmann polynomials with field-indepen-
dent term equal to zero, & }&h is a norm. The effective action W(V ) defined
below is defined such that W(V )(0)=0, so it is in that subspace.

Let

U(,)=(+C V V )(,)=| d+C(�) V(�+,) (10)

be the convolution of V with +C . U has an expansion of type (3), with

um� , m(Y
�
, Y

�
$)= :

n� �m� \
n�
m� + :

n�m \
n
m+ | dn� &m� X

� | dn&mX
�

$(&1)m(n� &m� )

_vn� , n(Y
�
, X

�
, Y

�
$, X

�
$)(�� n� &m� (X

�
) �n&m(X

�
$)) (11)

Here we used the antisymmetry of the coefficient vm� , m . Taking the norm
gives, by the Gram estimate (6),

|um� , m(Y
�
, Y

�
$)|� :

n�m \
n
m+ :

n� �m� \
n�
m� + |vn� , n | #C

n&m+n� &m� (12)

so

&+C V V&h�&V&h+#C
(13)

Thus integrating over fermionic variables only shifts the norm parameter
by the Gram constant. This is in strong contrast to bosonic problems, and
a first indication for the convergence of perturbation theory for fermions.
The above estimate is, however, not sufficient because it does not lead to
bounds that are uniform in |X|. For this we need to assume decay of the
covariance and of the vm , and consider connected functions, such as, e.g.,
generated by the effective action.

2.3. A Norm Bound for the Effective Action

Let V be even. We define the effective action as

W(V )(�)=log
1
Z | d+C(�$) eV(�+�$)=\log

1
Z

+C V eV+ (�) (14)

where Z=+C V eV | �=0 , so that W(V )(0)=0. For finite X, the argument of
the logarithm, (1�Z) +C V eV, is a polynomial whose constant term is 1;
thus W(�) is well-defined if &V&h is small enough (depending on X)
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because the expansion for the logarithm terminates after a finite number of
terms by nilpotency of the Grassmann variables. The following theorem
implies that analyticity holds uniformly in |X| provided the Gram constant
#C and the decay constant |C are bounded uniformly in |X|.

Theorem 1. Assume (5) and (9). Let V be even, V(0)=0, and
h$=h+3#C . If |C &V&h$<1 then W is analytic in V and in the fields, and

&W&h�&
1

|C
log(1&|C &V&h$) (15)

Let W(V )=�p�1 Wp(V )�p! be the expansion of W in powers of V. Then
for all P�1,

"W(V )& :
P

p=1

1
p!

Wp(V )"h
�|C

P &V&P+1
h$

1&|C &V&h$

(16)

Moreover, we can replace h$ by h"=h+2#C in (15) and (16) if we replace
|C by 2|C in these bonds.

In particular, for P=1,

&W(V )&+C V V&h�|C
&V&2

h$

1&|C &V&h$

(17)

A difference to the linear estimate (13) is that the shift in the norm
parameter h is not #C but ;#C with ;>1. It will be explicit in the proof
where this factor comes from; the last statement of the theorem shows that
there is some freedom in moving factors around in the constants. However,
we have not been able to prove a bound where the norm parameter shifts
only by #C .

We shall discuss a related bound in Section 3.6.

3. THE EXPANSION FOR THE EFFECTIVE ACTION

3.1. Connected Parts and Logarithms

In this section, we briefly recall a characterization of connected parts
and their role in taking logarithms. Let Np=[1,..., p], let A be a com-
mutative algebra with unit 1, and assume a function

:: P(Np) � A, Q [ :(Q) (18)

with :(<)=1 to be given (here P(M ) is the power set of M ).
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Lemma 1. There is a unique function

:c : P(Np) � A, Q [ :c(Q), :c(<)=0 (19)

that satisfies

\Q/Np : :(Q)= :
J0/Q

min Q # J0

:c(J0) :(Q"J0) (20)

Moreover, :(Q) is the sum over partitions of Q of products of :c of the
elements of the partition (here _* denotes the disjoint union):

:(Q)= :
m�1

1
m!

:
I1 ,..., Im{<

I1 _* } } } _* Im=Q

`
m

l=1

:c(Il) (21)

Proof. Induction on |Q| gives existence and uniqueness of :c : For
|Q|=1, (20) is simply :c(Q)=:(Q). Once :c(Q$) has been determined for
all Q$ with |Q$|<|Q|, (20) is solved in the form

:c(Q)=:(Q)& :
J0/Q

min Q # J0{Q

:c(J0) :(Q"J0) (22)

The right hand side of (21) solves (20). K

The convention :c(<)=0 has no consequences because :c(<) never
appears in any formula.

Lemma 2. As a formal series in :c ,

log \1+ :
Q/Np
Q{<

:(Q)+= :
m�1

1
m!

:
I1 ,..., Im/Np
all nonempty

U (m)
c (I1 ,..., Im) `

m

l=1

:c(Il) (23)

where U (1)
c =1 and for m�2,

U (m)
c (I1 ,..., Im)= :

G # Gc(Nm)

`
(i, j) # G

#(Ii , Ij ) (24)

with #(Ii , Ij )=&1 if Ii & Ij{< and 0 otherwise, and Gc(Np) the set of con-
nected graphs on Np . In particular, if *1 ,..., *p are formal parameters, then

� p

�*1 } } } �*p
log \1+ :

Q/Np
Q{<

:(Q) `
q # Q

*q+ }*=0

=:c(Np) (25)
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Proof. When (21) is inserted to replace :(Q), `=1+� :(Q) takes
the form of a polymer partition function, with the nonempty subsets of Np

as polymers and disjointness as the compatibility relation. Equation (23) is
the standard polymer formula for the logarithm of the partition func-
tion.(8, 10) Equation (25) follows by noting that for all m�2, the connected-
ness condition in the function U (m)

c implies that after differentiation, some
factors *i remain, so that evaluating at zero picks out the term m=1 from
the sum (see ref. 10, Section 2.5). K

3.2. Connected Parts of the Laplacian

We expand the effective action

W(*V )= :
p�1

* p

p!
Wp(V ) (26)

with Wp(V )=(V; ...; V ) &(� p��* p) log Z |*=0 , where, for elements
V1 ,..., Vp of the even subalgebra,

(V1 ;...; Vp)=_ � p

�*1 } } } �*p
log(+C V e*1V1+ } } } +*pVp)&*q=0 \q

(27)

is the connected correlation function of V1 ,..., Vp . It is an element of the
even subalgebra. The subtraction of log Z removes the �-independent term
from Wp(V ). Because the derivative is evaluated at *=0, we can replace
+C V e*1V1+ } } } +*pVp by

+C V `
p

q=1

(1+*qVq)=1+ :
Q/Np
Q{<

:(Q) `
q # Q

*q (28)

with

:(Q)=+C V `
q # Q

Vq (29)

Similarly, we can replace Z by (28) evaluated at �=0. Because all Vq are
in the even subalgebra, :(Q) is in the even subalgebra, and hence all : 's
commute. Thus, by Lemma 2,

(V1 ;...; Vp)=:c(Np) (30)

We now rewrite Gaussian convolutions in terms of the action of a
Laplacian acting on p independent copies of the field �; this is convenient
for doing the combinatorics.
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Lemma 3. Let 2=� p
q, q$=1 2qq$ where

2qq$=&\ $
$�q

, C
$

$�� q$
+ (31)

Then

\+C V `
q # Q

Vq+ (�� , �)=_e2 `
q # Q

Vq(�� q , �q)&�� q=��
�q=�

\q # Np

(32)

Proof. See Appendix B. K

Because the exponential of the Laplacian acts on a product over q # Q,
it suffices to get an expression for the connected part of e2:

(V1 ;...; Vp)=(e2)c `
p

q=1

Vq (33)

3.3. A Direct Resummation

We now discuss a representation of the connected part of the
Laplacian as a sum over trees which corresponds to a direct resummation
of the Feynman graph expansion, to motivate the solution to the problem.

Because all 2qq$ commute with one another,

e2= `
p

q=1

e2qq `
q<q$

(1+e2qq$+2q$q&1)

= `
p

q=1

e2qq :
G # G(Np)

`
[q, q$] # G

(e2qq$+2q$q&1) (34)

with G summed over all graphs on Np (that is, the set of all subsets of Np

that have two elements). Decomposing every G into its connected com-
ponents, we get (cf. (21))

(e2)c= `
p

q=1

e2qq :
G # Gc(Np)

`
[q, q$] # G

(e2qq$+2q$q&1) (35)

with G now summed over connected graphs on Np .(8, 10)

Applying (e2)c to > Vq generates the expansion of (V1 ;...; Vp) as a sum
of values of Feynman graphs. Because every G is connected, all Feynman
graphs that contribute are connected (see Sections 2.3 and 2.4 of ref. 10).
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A term by term estimation of the sum in (35) cannot lead to con-
vergence: |G(Np)|=2( p

2) and Gc is of similar size. The 1�p ! in (26) decreases
more slowly, so the majorant series obtained by term-by-term estimation
diverges.

However, one can partly resum the expansion, to get a sum over trees
(connected graphs without loops), using

Lemma 4. To every tree T # T(Np) there is a graph H*(T ) #
G(Np) such that T & H*(T )=< and Gc(Np) is the disjoint union

Gc(Np)= .
T # T(Np)

[H _ T : H/H*(T )] (36)

We include Penrose's proof (11) in Appendix C.1. Another proof can be
found in ref. 8. An immediate consequence of Lemma 4 is a representation
of the connected correlations as a sum over trees.

Theorem 2. Let 2(T )=� p
q=1 2qq+�[q, q$] # H*(T ) (2qq$+2q$q). Then

(e2)c= :
T # T(Np)

e2(T )
`

[q, q$] # T

(e2qq$+2q$q&1) (37)

Proof. Let aqq$=e2qq$+2q$q&1. By Lemma 4 and the binomial
theorem,

:
G # Gc(Np)

`
[q, q$] # G

aqq$= :
T # T(Np)

`
[q, q$] # T

aqq$ :
H/H*(T )

`
[q, q$] # H

aqq$

= :
T # T(Np)

`
[q, q$] # T

aqq$ `
[q, q$] # H*(T )

(1+aqq$) K (38)

Finally, we can use e2&1=2 �1
0 ds es2 on every line of the tree, to get

(e2)c= :
T # T(Np)

`
[q, q$] # T

(2qq$+2q$q) | ds e2(T, s)
(39)

with s=(sl)l # T , ds=>l # T dsl , and

2(T, s)=2 (T )+ :
[q, q$] # T

s[q, q$](2qq$+2q$q) (40)

By Cayley's theorem,

|T(Np)|�p p&2�( p&1)! e p&1 (41)
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and the ( p&1)! gets cancelled by the p ! in the denominator in (26). Thus
this resummation will lead to a convergence proof if the action of each
summand on > Vq can be bounded uniformly in T. It is at this point that
a problem arises with the representation (39). The action of e2(T, s) on a
monomial gives a determinant, but we have no bound for the corre-
sponding Gram constant that is uniform in T. We explain the reasons for
this in the following and then derive a representation that looks very
similar to (39), but leads to uniform Gram constants.

3.4. Positivity and Gram Estimates

A general feature of tree expansions like (39) is that the Laplacians
appearing in (e2)c depend on the tree T and further parameters. To discuss
this dependence, we introduce the following notation. For a matrix
M # Mp(C) and Q/Np , let

2Q[M]= :
q, q$ # Q

Mqq$ 2qq$ (42)

We abbreviate 2Np
[M]=2[M]. The matrix element Mqq$ can be thought

of as a weight factor associated to the directed line (q, q$). The matrices M
occurring in our Laplacians will always be real and symmetric. The
Laplacian acting in (32) is 2[P], where Pqq$=1 for all q and q$. Note that
P is p times the orthogonal projection to the space spanned by the vector
(1,..., 1), so P is positive (we call a matrix M positive, and write M�0, if
M is hermitian and has nonnegative eigenvalues). It is the positivity of the
coefficient matrix M which will be crucial for good estimates. The structure
of the matrices M belonging to the Laplacians in (39) is discussed in detail
in Appendix C.2.

The product V1(�1) } } } Vp(�p) is linear in every factor, so we can for
the following restrict to a single summand vm� q , mq

from the representation
(3) for every q. Thus the Laplacian now acts on an element of degree
m� 1+ } } } +m� p in �� and m1+ } } } +mp in the �. It will be convenient to
keep the coefficient function vm� q , mq

and the integral over the X variables.
Let B=Np_X, and for !=(q, X ) # B let 9(!)=�q(X ) and

9� (!)=�� q(X ). Introducing

1 ((q, X ), (q$, X $))=Mqq$C(X, X$) (43)

and using the notation �B d! F(!)=� p
q=1 �X dX F(q, X ), we have

2[M]=&|
B

d! |
B

d!$
$

$9(!)
1 (!, !$)

$
$9� (!$)

=21 (44)
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Then

e2[M] `
p

q=1

�mq
q (X

�
q) `

p

q=1

�� m� q
q (X

�
$q)=e21 `

! # D

9(!) `
!$ # D�

9� (!$) (45)

where D/B and D� /B are determined by the X
�

q and X
�

$q .
For subsets A, A� of B with |A� |=|A|=d, denote the corresponding

minor of 1 by 1A� , A , that is, if we order B in some way, and if
A=[a1 ,..., ad ] with a1< } } } <ad and A� =[a� 1 ,..., a� d ] with a� 1< } } } <a� d ,
then 1A� , A is the d_d matrix with entries

(1A� , A) i, j=1a� i , aj
(46)

Lemma 5. There are =AA�
DD� # [1, &1] such that

e21 `
! # D

9(!) `
!$ # D�

9� (!$)

= :
A/D, A� /D�

|A| =|A� |

=AA�
DD� det(1A, A� ) `

! # D"A

9(!) `
!$ # D� "A�

9� (!$) (47)

Proof. Expand and permute. K

Thus we have to estimate determinants. The point is now that good
Gram estimates require some positivity.

We call a matrix A a Gram matrix with Gram constant : if there is a
Hilbert space H and there are vectors fi and gj with & fi &�: and &gj&�:
such that Aij=( fi , gj).

Lemma 6. If A is a Gram matrix with Gram constant :, then every
minor AD� , D is a Gram matrix with Gram constant :, and

|det AD� , D |�: |D|+|D� |=:2 |D| (48)

If A and B are Gram matrices with Gram constants : and ;, and if
Cij=AijBij , then C is a Gram matrix with Gram constant :;.

Proof. The statement about minors is trivial; (48) follows from
Gram's inequality (see e.g., Appendix B.4 of ref. 10). If Aij=(ai , a~ j) and
Bij=(bi , b� j) , then Cij=(ai�b i , a~ j �b� j) is also a Gram matrix, with
Gram constant :;. K
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Every nonnegative matrix is a Gram matrix:

Lemma 7. Let A be a real matrix, A=AT, A�0 (that is, all eigen-
values of A are nonnegative). Then A is a Gram matrix and

0�det A� `
n

i=1

Aii (49)

Proof. All eigenvalues of A are nonnegative, so there is a real
matrix B, with B=BT�0 such that A=BBT=B2. If bi=(bik)k is the i th
row vector of B, this means Aij=(b i , bj) , thus in particular A ii=&b i&2.
The Gram inequality implies det A�>i &bi&2, so (49) holds. K

If A=AT, but A is not necessarily positive, A can also be written as
a Gram matrix by the polar decomposition. However, now Aij=(b� i , b j) ,
and instead of an equality, one only has Aii=(b� i , bi) �&b� i& &bi &, so the
Gram bound for the determinant is not just a bound by the product of the
diagonal elements. In general, it is not easy to get bounds on the norm of
the bi and b� i . The absence of these bounds is exactly the problem with the
tree representation (39) of the connected correlations (we discuss this in
Appendix C.2).

But Lemma 7 also suggests a way out of this problem. The classic
Brydges�Battle�Federbush interpolation that preserves stability of poten-
tials will, as we shall see, also preserve the positivity of the matrix M that
appears in 2[M]. The following immediate consequence of Lemma 7 then
implies uniformity of the Gram constant.

Lemma 8. Let M be real and symmetric, and M�0, with diagonal
elements Mqq�1 for all q # Np . Assume (5). Then 1, given by (43), is a
Gram matrix with Gram constant #C .

Proof. By Lemma 7, M is a Gram matrix with Gram constant 1. Let
Mqq$=(bq , bq$) be its Gram representation. By (5),

1 ((q, X ), (q$, X$))=(bq� fX , bq$�gX$) (50)

As in the proof of Lemma 6, the Gram bound implies the statement. K

The matrix P appearing in the Laplacian in (32) has every entry equal
to one, so it is a positive multiple of a projection. Hence P�0, and all
diagonal elements of P are equal to 1. Decoupling off-diagonal blocks
preserves these properties:
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Lemma 9. For M # Mp(R), s # [0, 1], and A/Np , let (M (A, s))q, q$

=sMqq$ if q � A and q$ # A, or if q # A and q$ � A, and (M (A, s))q, q$=Mqq$

otherwise. Then the diagonal elements of M (A, s) remain unchanged,

(M (A, s))qq=Mqq \q # Np (51)

and if M=MT�0, then the same holds for M (A, s).

Proof. It is obvious that the diagonal elements remain unchanged
and that the matrix remains symmetric. By permuting the rows and
columns of M with the same permutation, which amounts to a change of
basis and therefore does not change positivity properties, we can assume
that A=Nr for some r�p, and thus get, with Ac=Np"A,

M (A, s)=\ MAA

sM T
AAc

sMAAc

MAcAc +=sM+(1&s) \MAA

0
0

MAcAc + (52)

The blockdiagonal matrix inherits positivity from M. Thus M (A, s) is a
convex combination of two positive matrices, hence positive. K

A tree expansion leading to uniform Gram constants is given in the
following theorem.

Theorem 3. Let M be a real symmetric matrix, and M�0. Then

(e2[M])c (Np)= :
T # T(Np)

`
[q, q$] # T

Mqq$(2qq$+2q$q)

_|
[0, 1]p&1

ds :
? # 6(T )

.(T, ?, s) e2[M(T, ?, s)] (53)

where s=(s1 ,..., sp&1), ds=ds1 } } } dsp&1 , .(T, ?, s)�0, and M(T, ?, s) is a
nonnegative symmetric matrix with diagonal entries (M(T, ?, s))qq=Mqq .
The sum over ? runs over a T-dependent set 6(T ) of permutations ?
of Np , and

| ds :
? # 6(T )

.(T, ?, s)=1 (54)

This is a variant of the BBF formula.(14, 9, 15, 13) It is proven by a repeated
application of Lemma 9. We include a simple proof of Theorem 3, which
avoids all explicit details about .(T, ?, s) that we are not going to need,
in Appendix A. The essential points we need, namely the positivity of
M(T, ?, s) and (54), do not depend on these details.
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3.5. Proof of Theorem 1

By Theorem 3 and Lemma 8, we can now bound &(V1 ;...; Vp)&h

essentially by a sum over trees, to which standard procedures apply, as
follows. The action of >[q, q$] # T (2qq$+2q$q) on the homogeneous polyno-
mial

| `
p

q=1

dX
�

q dX
�

$q v (q)
m� q , mq

(X
�

q , X
�

$q) �� m� q
q (X

�
q) �mq

q (X
�

$q) (55)

is as follows. Let the tree T have incidence numbers d1 ,..., dp . Then
dq=%q+%� q derivatives act on the q th factor, %q of them with respect to �q ,
and %� q with respect to �� q . Because the coefficient function is totally
antisymmetric, these derivatives give rise to a combinatorial factor
m� q(m� q&1) } } } (m� q&%� q+1) mq(mq&1) } } } (mq&%q+1), that is,

\m� q

%� q + %� q! \mq

%q + %q ! (56)

times a monomial of total degree mq&%q+m� q&%� q for every q. Applying
e2[M(T, ?, s)] to the product of these monomials gives, by Lemma 5, a sum
over subsets A, A� of determinants of minors determined by A and A� (these
subsets are unions of subsets A� q and Aq for every factor belonging to
q # Np). Estimate the determinants. Because M(T, ?, s) is positive and has
diagonal elements bounded by 1, the Gram constant of the corresponding
matrix 1 is #C independent of T, s, and ?. Thus, by Lemma 8, each deter-
minant is bounded by #aq+a� q

C , where aq=|Aq |, a� q=|A� q |. We use (54) to do
the s-integral and the sum over ?. By Cayley's theorem on the number of
trees with fixed incidence numbers d1 ,..., dp (see, e.g., ref. 15, Section 20.3),
we can sum over incidence numbers, and are left with

&Wp(V )&h� :
m1 ,..., mp�1

:
m� 1 ,..., m� p�1

S((mq , m� q)q # Np
)

_ :
d1 ,..., dp�1

d1+ } } } +dp=2( p&1)

( p&2)!
(d1&1)! } } } (dp&1)!

_ :
%1 ,..., %p , %� 1 ,..., %� p�0

%q+%� q=dq , %q�mq , %� q�m� q

\m� q

%� q + %� q ! \mq

%q + %q !

_ :
a1 ,..., ap�0
a� 1 ,..., a� p�0

`
p

q=1 \
mq&%q

aq +\m� q&%� q

a� q +
_hmq&%q&aq+m� q&%� q&a� q #C

aq+a� q (57)
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The binomials come from the number of subsets Aq with |Aq |=aq , and

S= sup
T # T(Np)

sup
X�

max
i

| dX
�

dX
�

$ | dY
�

dY
�

$ $X (X� , Zi )

_ `
[q, q$] # T

C(Xq , X$q$) `
p

q=1

|v (q)
m� q , mq

(X
�
, Y

�
, X$, Y

�
$)| (58)

with

C(X, X$)=max[ |C(X, X$)|, |C(X$, X )|] (59)

and where Zi denotes one of the coordinates in X
�
, Y

�
, X

�
$, Y

�
$ that is fixed to

X� by the delta function. The supremum over X� is the supremum in the
definition (8) of & }&h . (here we used that in the seminorm & }&h , the field-
independent term is left out. We give a bound for this term in Section 3.6).
Root the tree at the q for which X� appears as an argument of v(q), and per-
form the integrals in (58) by trimming the tree in the usual way (see ref. 9,
Appendix C) and using the summability (9) of the propagator. This gives

S�|C | p&1 `
p

q=1

|v (q)
m� q , mq

|�| p&1
C #2( p&1)

C `
p

q=1

|v (q)
m� q , mq

| (60)

The sums over aq and a� q give (h+#C)m� q&%� q+mq&%q. The incidence numbers
dq on the tree satisfy

2( p&1)= :
p

q=1

dq= :
p

q=1

(%q+%� q) (61)

Because %� q+%q=dq�1,

%q ! %� q !
(dq&1)!

�max[%q , %� q] (62)

Using this bound we can sum over the dq (dropping the constraint that
d1+ } } } +dp=2( p&1)) and thus remove the constraint %� q+%q=dq in the
% sums. The remaining sums over the %q and %� q are bounded by

:
%�0 \

m
% + (h+#C)m&% max[1, %] #%

C (63)
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Using max[1, %]�2%, we can bound this sum by (h+3#C)m. Thus the sum
over the mq and m� q gives

&Wp(V )&h�( p&2)! | p&1
C &V& p

h$ (64)

with h$=h+3#C . The 1�p! in the denominator in (26) cancels the ( p&2)!,
and (16) follows by summation over p�P+1�2. Similarly, to prove (15),
we use (64), bound ( p&2)!�p!�1�p for p�2 and note that &W1(V )&h=
&+C V V&h , so that the bound for the term p=1 follows by (13) and
monotonicity of & }&h in h. Thus, summing over p�1 gives

&W(V )&h� :
p�1

1
p

| p&1
C &V& p

h$=&
1

|C
log(1&|C &V&h$) (65)

Finally, we prove that h$ can be replaced by h"=h+2#C if |C is replaced
by 2|C in the bounds in Theorem 1. In the sum over incidence numbers
d1 ,..., dp , there is the constraint d1+ } } } +dp=2( p&1). We thus write

1
(d1&1)! } } } (dp&1)!

=
d1 } } } dp

d1! } } } dp !
(66)

and use the arithmetic-geometric inequality, to get

d1 } } } dp�\d1+ } } } +dp

p +
p

=2 p \1&
1
p+

p

�2 p 1
e

�2 p&1 (67)

Then the factors max[1, %] drop out of (63), so the sums over %q and %� q

give 2mq+m� q instead of 3mq+m� q, and hence

&Wp(V )&h�( p&2)! (2|C) p&1 &V& p
h+2#C

(68)

3.6. Exponential Decay and Cumulant Bounds

Let d(X, X$) be a pseudometric on X (i.e., satisfy all properties of a
metric except possibly that d(X, X$)=0 implies X=X$). A typical example
of this situation is if X=M_A with M a metric space, such as a torus in
real space and A a finite set (such as colour and spin indices).

Theorem 4. Assume that C satisfies (5) and that there are con-
stants |~ C and lC such that for all X, X$ # X

C(X, X$)�#2
C |~ C e&d(X, X$)�lC (69)
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Let p�2, m1 ,..., mp�0, m� 1 ,..., m� p�0 such that mq+m� q>0 is even for all
q # Np , let X

�
q=(Xq, 1 ,..., Xq, mq

) and Y
�

q=(Yq, 1 ,..., Yq, m� q
), and let

G((X
�

q , Y
�

q)q # Np
)=(�� m� 1(Y

�
1) �m1(X

�
1);...; �� m� p(Y

�
p) �mp(X

�
p))

=
� p

�*1 } } } �*p
(+C V e�q *q�� m� q(Y

�
q) �mq(X

�
q)) } *q=0 \q

�=�� =0

(70)

Then

G((X
�

q , Y
�

q)q # Np
)�( p&2)! |~ p&1

C (3#C)m� +m e&(1�lC) L((X
�

q , Y
�

q)q # Np
) (71)

and

G((X
�

q , Y
�

q)q # Np
)�( p&2)! (2|~ C) p&1 (2#C)m� +m e&(1�lC) L((X

�
q , Y

�
q)q # Np

) (72)

with L((X
�

q , Y
�

q)q # Np
) defined as the minimum of

min
T # T(Np)

min { :
[q, q$] # T

d(Xq, i , Yq$, j ) : i # Nmq
, j # Nm� q$= (73)

and

min
T # T(Np)

min { :
[q, q$] # T

d(Yq, j , Xq$, i ) : j # Nm� q
, i # Nmq$= (74)

Proof. If we write the monomials as

�(X1) } } } �(Xm)=| dmX
�

$ `
m

k=1

$(Xk , X$k) �m(X
�

$)

=| dmX
�

$Am \ `
m

k=1

$(Xk , X$k)+ �m(X
�

$) (75)

with the antisymmetrization operator

Am F(X1 ,..., Xm)=
1

m!
:

? # Sm

=(?) F(X?(1) ,..., X?(m)) (76)

G becomes the field-independent term of the special case of (V1 ;...; Vp)
where Vq consists only of the term (m� q , mq), with coefficient function

v (q)
m� q , mq

(Y
�
$q , X

�
$q)=Amq _ `

mq

k=1

$(Xq, k , X$k)& Am� q _`
m� q

l=1

$(Yq, l , Y$l)& (77)

575Positivity and Convergence in Fermionic QFT



Integrating over the X$ and Y$ variables only removes the delta functions;
in particular

sup
X
�

q , Y
�

q
| `

p

q=1

dm� qY
�
$q dmqX

�
$q |v (q)

m� q , mq
(Y

�
$q , X

�
$q)|�1 (78)

We now consider the contribution AT of one tree T # T(Np) in the sum in
Theorem 3 to the absolute value of the connected correlation G. The only
differences to (57) are that

v there is no sum over mq and m� q .

v because we now consider the field-independent part (�=�� =0), all
fields are integrated over; this picks out the term A=D and A� =D� in
Lemma 5.

The second condition implies that G vanishes unless m=m1+ } } } +
mp=m� 1+ } } } +m� p=m� , which we assume from now on. Then

AT�| dX dY `
[q, q$] # T

C(Xq , X� q$)

_ `
p

q=1

|v (q)
m� q , mq

(X� (q), Y� (q), X (q), X (q))|

_ `
p

q=1
_\mq

%q + %q ! \m� q

%� q + %� q ! #m� q&%� q+mq&%q
C & (79)

Here we denoted thoses integration variables on which C factors depend
by X, the others by Y. By definition, the lines in the tree can only connect
distinct q and q$. By (69),

`
[q, q$] # T

C(Xq , X� q$)�#2( p&1)
C |~ p&1

C e&(1�lC) �[q, q$] # T d(Xq , Xq$) (80)

By (61), the factor #2( p&1)
C combines with the other powers of #C to #m� +m

C .
By (77), the pseudodistances appearing in the sum are all of the form
d(Xq, i , Yq$, i $), so

:
[q, q$] # T

d(Xq , Xq$)�L((X
�

q , Y
�

q)q # Np
) (81)

We can now bound the integral by 1 using (78) and then sum over all trees.
Again, the only dependence on the tree left is in the incidence numbers. As
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in the proof of Theorem 1, we get factors 2m+m� 2 p&1 or 2m+m� , depending
on how we do the bounds. Thus (71) and (72) hold. K

In ref. 16, we use these bounds to derive estimates for norms & }&h, l

which keep track of the decay length l, and also construct a superrenor-
malizable version of the Gross�Neveu model using these norms.

4. DISCUSSION

We have seen that the heuristic principle of resumming a graphical
expansion in terms of trees can be realized in different ways, and only one
of them was suited for using Gram estimates. This nonuniqueness of the
tree representation is not surprising because there is no canonical way of
associating a tree with a given graph. To get the decomposition in
Lemma 4, we had to introduce a particular ordering on the set of all lines
to obtain a well-defined map G [ T=8(G). The BBF interpolation expan-
sion does not group graphs into disjoint sets associated to different trees.
Instead, the parameters used for the decoupling of vertices provide tree-
dependent weight factors for the graphs. In the representation (39), the
interpolation parameters are associated to the lines of the tree and not to
the vertices; in fact, in that approach, interpolation parameters can be
avoided altogether by expanding down the Laplacian in e2qq$+2q$q&1 piece
by piece (using that the Laplacian 2(q, X ), q$=$�$�q(X ) � dX$ C(X, X$)
$�$�� q$ (X $) is nilpotent). Thus, although at the moment not sufficient for
proving convergence, the representation (37) may be a good way of
organizing perturbation expansions in practical calculations because no
interpolation integrals are needed. It is better to have the sign cancellations
occur in a determinant than to have at the very end a difference of two
large numbers which are almost equal.

We now discuss (our understanding of ) the relation of our approach
to others that have appeared recently.

The construction(5) of the Gross�Neveu model and the many-fermion
system is, at least technically, rather different from the approach taken
here, in that it relies on forest formulas that are more explicit, but also
more closely tied to the Feynman graph expansion than our tree represen-
tations. Positivity is also used in the technical parts of the proofs in ref. 5.

The ring expansion invented in ref. 4 is as simple as our approach
as regards the combinatorial and technical complications in the proof.
Very roughly speaking, the operator R introduced there adds layers to
the Feynman graphs, and thus to the spanning trees, and the condition
that &R&<1 corresponds to our condition that |C &V&h<1. A technical
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difference is that the expansion in ref. 4 is for the externally connected
functions whereas our proof deals directly with the connected correlation
functions themselves.

There are some more essential differences. Firstly, an advantage of the
representation in ref. 4 is that &R&<1 is, while sufficient, not necessary for
the representation to be defined because the formulas involve (1&R)&1,
whose existence only requires that 1 is not an eigenvalue of R.

Secondly, Wick ordering is used in ref. 4 to organize the ring expan-
sion, but it plays no role in our approach. Wick ordering would simply
correspond to dropping the diagonal terms �q 2qq from our Laplacians.
This destroys the positivity of the matrix M even in the case of the BBF
decoupling. However, the positivity can easily restored by adding and sub-
tracting the diagonal term and applying the two Laplacians one after the
other, in the same way as we do it in Appendix C.2. This merely changes
the Gram constant by a factor 2. Thus in our approach, Wick ordering
could also be used, but it makes the constants worse.

Thirdly, an advantage of our norm bounds over those in ref. 4 is that
they are also sharp in the limit C � 0, where W(V ) � V, and #C � 0. Our
shifted norm parameter h$ satisfies h$=h+3#C � h, so that in the limit of
no integration (C � 0), we do not lose anything in the h-behaviour. In
ref. 4, the norm parameter shifts to h+1.

Because our bounds are suitable for C � 0, they stay useful for
CtC4 2t even in the limit 2t � 0, and they imply that the renormalization
group differential equation (RGDE)

W4 =2C4 W+
1
2 \

$W
$�

, C4
$W
$�� + (82)

is well-defined and has a solution in a ball where &W&h is small enough,
uniformly in |X|. This follows simply because, by definition, the effective
action W(V ) is the solution of the RGDE (82) with the initial condition
that W equals V at flow time t=0. Of course, we have not used any dif-
ferential equation techniques to prove this. In particular, our proof does
not constitute a nonperturbative version of Polchinski's method(17) of prov-
ing perturbative renormalizability by integrating differential inequalities.

A Polchinski-type proof of norm bounds similar to ours would
probably give the simplest and most elegant tool in fermionic constructive
field theory. Unfortunately, the proof in ref. 3, which uses differential
inequalities, contains a gap (the problem is that #2

C is homogeneous of
degree 1 in C, so #C4 2tt- 2t is not linear in 2t). This is one of the reasons
why we used a discrete technique in this paper, to prove a norm bound
similar to the one in ref. 3. Our bound is slightly weaker: in ref. 3, a bound
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for &W(V )&h in terms of &V&h+#C
, i.e., without a factor in front of the #C ,

was stated. We believe that the question if the optimal prefactor is strictly
bigger than one may be related to the square root problem mentioned
above. This is also why we discussed this prefactor in and after Theorem 1.

One appealing feature of our norm bounds is that every order p in the
expansion of W in terms of V is bounded separately. This makes it con-
venient for calculating W(V ) to low orders in V and taking norm bounds
of the remainders.

The bounds given here have natural applications in RG studies of the
Gross�Neveu model(16) and the many-fermion problem.

APPENDIX A. THE DECOUPLING EXPANSION

For <{A/Np , let

2� A, q[M]= :
q$ # A

Mq$q(2q$q+2qq$) (83)

Then, if M=MT,

2Q[M (A, s)]=2A[M]+2Q"A[M]+s :
q # Q"A

2� A, q[M] (84)

In particular,

2Q[M (A, 1)]=2Q[M]
(85)

2Q[M (A, 0)]=2A[M]+2Q"A[M]

and for all s # [0, 1] and all B that satisfy either B & A=0 or B/A,

2B[M (A, s)]=2B[M] (86)

because the constraint q, q$ # B in the definition of 2B makes off-diagonal
terms of type q # A, q$ � A impossible. Taylor expansion now gives

e2Q[M]=e2A[M] e2Q"A[M]+ :
q # Q"A

2� A, q[M] |
1

0
ds e2Q[M(A, s)] (87)

Lemma 10. Let Q/Np , M=MT # Mp(R). For r�1 let

Sr(Q)=[q=(q1 ,..., qr) : q1=min Q, \i : qi # Q, qi{q j if i{ j ] (88)
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Then for all R�1,

e2Q[M]= :
R

r=1

:
q # Sr(Q)

e2Q"Ar
[M] | `

r&1

w=1

dsw 2� Aw , qw+1
[Mw] e2Ar

[Mr]+RR+1

(89)

with Aw=[q1 ,..., qw] and the Mr defined recursively as M1=M,
Mw+1=M (Aw , sw)

w , and a remainder term

RR+1= :
q # SR+1(Q)

| `
R

w=1

dsw 2� Aw , qw+1
[Mw] e2Q[MR+1] (90)

For all w # [1,..., R] and all B/Q"Aw ,

2B[Mw]=2B[M] (91)

and if M�0, then Mw�0 for all w # [1,..., R+1].

Proof. Induction on R, with (89), (90), (91), and Mw�0 for all
w�R+1, as the inductive hypotheses. The statement for R=1 is (87),
with A=[q1]. R [ R+1: In the remainder term, the sum over q # SR+1

includes a sum over qR+1 � AR . Let AR+1=AR _ [qR+1], and MR+2=
(MR+1) (AR+1 , sR+1). Then MR+2�0 by Lemma 9. Now apply (87) to
e2Q[MR+1]. The second summand in (87) gives the new remainder term
RR+2 . The first summand in (87) is

e2Q"AR+1
[MR+1] e2AR+1

[MR+1] (92)

Because AR/AR+1 , B=Q"AR+1/Q"AR , so B & AR=<. Thus by (86),

2Q"AR+1
[MR+1]=2B[M (AR , sR)

R ]=2B[MR] (93)

By the inductive hypothesis (91), 2B[MR]=2B[M], hence does not
depend on s, so its exponential can be taken out of the integral. K

If R=|Q|, SR+1(Q)=<, so the remainder term vanishes, and we get

e2Q[M]= :
J/Q

J % min Q

e2Q"J[M]K(J ) (94)

where for |J |= j,

K(J )= :
q # Sj (J )

| `
j&1

i=1

dsi 2� [q1 ,..., qi ], qi+1
[Mi] e2J[Mj] (95)
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By Lemma 1, (e2)c (Q)=K(Q). It remains to bring K(Np) to the form
stated in Theorem 3 and to show (54). The conditions in the sum over
sequences in Sp(Np) imply that Sp(Np) is the set of all permutations
i [ qi=?(i) with ?(1)=1. The sum in the definition of 2� A, qi

runs over qv(i)

with v(i)<i. Thus

(e2[M])c (Np)= :
v: [2,..., p] � [1,..., p&1]

v(i)<i

:
? # Sp

?(1)=1

|
[0, 1]p&1

ds f (?, v, s)

_ `
p

r=2

(2?(v(r)), ?(r)+2?(r), ?(v(r))) M?(v(r)), ?(r) e2[Mp] (96)

where f (?, v, s)�0 is a monomial in s arising from the repeated interpola-
tion. We shall not need an explicit expression for it (it is given in ref. 13
and needed for the explicit Gram representation of ref. 12).

The map v is a special case of a predecessor relation defining a tree:
for every v in the above sum, Tv=[[v(i), i ] : i # [2,..., p]] is a tree on Np .
The map v [ Tv is injective, but not surjective because of the particular
ordering induced by v (for instance, the tree T=[[1, 3], [2, 3]] is not Tv

for any v with v(i)<i). On the other hand, every tree on Np is of the form
T ?

v =[[?(v(i)), ?(i)] : i # [2,..., p]] for some ? and v. The Laplacian in (96)
does not depend on v, and the product in (96) runs over lines of T ?

v . Thus
we can reorganize the sums over v and ? by a sum over trees T and a sum
over v, ? with the constraint that T ?

v =T. Defining

.(T, ?, s)= :
v: T v

?=T

f (?, v, s)�0 (97)

and 6(T ) as the set of permutations ? for which ?(1)=1 and T ?=T, we
get (53).

The proof of (54) is now as given by Battle and Federbush:(14) (53)
holds for any family of commuting variables 2qq$ and matrices Mqq$ . Let T0

be a fixed tree, =>0, and Mqq$== if [q, q$] # T0 , Mqq$=0 otherwise (in
particular, Mqq=0). Set 2qq$=1�2. Then (53) implies that

lim
= � 0

=&p+1(e2[M])c (Np)=| ds :
? # 6(T0)

.(T0 , ?, s) (98)

On the other hand, in the standard representation of the connected part by
a sum over connected graphs,

(e2[M])c (Np)= `
p

q=1

eMqq2qq :
G # Gc(Np)

`
[q, q$] # G

(eMqq$ (2qq$+2q$q)&1) (99)
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the above choice for Mqq$ picks out the contribution from the tree T0 , so

=&p+1(e2[M])c (Np) � 1 (100)

as = � 0.
Thus we get the tree expansion for the connected part of e2 stated

in Theorem 3. If the �q and �� q are independent fields, the Laplacian
2[M(T, ?, s] really depends on the permutation ?. After evaluation at
�q=� and �� q=�� for all q, the ? dependence drops out and one gets back
the fermionic analogue of the BBF representation given in ref. 9.

APPENDIX B. PROOF OF LEMMA 3

Using source fields, we have

Vq(�� , �)=_Vq \&
$

$'q
,

$
$'� q + e('� q , �)+(�� , 'q)&'q='� q=0

(101)

Integration, differentiation and evaluation at zero are all continuous opera-
tions on the finite-dimensional Grassmann algebra, hence interchangeable.
The source term factors are in the even subalgebra, so no signs arise from
commuting. Thus the left hand side of (32) becomes

`
q # Q

Vq \&
$

$'q
,

$
$'� q+ | d+C(�� $, �$) `

q # Q

e('� q , �+�$)+(�� +�� $, 'q)

= `
q # Q

Vq \&
$

$'q
,

$
$'� q+ e�q, q$ # Q ('� q , C'q$)+�q # Q [('� q , �)+(�� , 'q)] (102)

evaluated at 'q='� q=0. Again using (101), the right hand side becomes

_ `
q # Q

Vq \&
$

$'q
,

$
$'� q + e2 e�r # Q [('� r , �r)+(�� r , 'r)]&'='� =0

(103)

Because all 2qq$ commute with one another, e2=>q, q$ e2qq$. Because

2qq$ e�r # Q [('� r , �r)+(�� r , 'r)]=('� q , C'q$) e�r # Q [('� r , �r)+(�� r , 'r)] (104)

applying e2 gives

e2qq$ e�r # Q [('� r , �r)+(�� r , 'r)]=e('� q , C'q$) e�r # Q [('� r , �r)+(�� r , 'r)] (105)
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and therefore (103) is equal to

_ `
q # Q

Vq \&
$

$'q
,

$
$'� q+ e�q, q$ ('� q , C'q$) e�r # Q [('� r , �r)+(�� r , 'r)]&'='� =0

(106)

If we set �q=� and �� q=�� for all q, we get the last line of (102).

APPENDIX C. THE DIRECT RESUMMATION

C.1. Penrose's Proof of Lemma 4

Define a map 8: Gc(Np) � T(Np) as follows. Let G # Gc(Np). For a
vertex q # Np"[1] let lq be the length of a shortest path connecting it to the
vertex 1. This partitions Np into sets Al of vertices with distance l to 1.
Delete all lines [q, q$] for which q # Al and q$ # Al , for all l�1. Call the
resulting graph G$. Then every line of G$ goes from Ak to Ak+1 for some k.
Also, G$ is still connected, thus for every vertex q�2, the set of lines
reaching q, Rq=[[q, q$] # G$], is nonempty. Delete all lines of Rq except
the one with the smallest q$ from G$. The resulting graph is connected and
has q&1 lines. Thus it is a tree T. Let 8(G)=T.

For a tree T, 8(T )=T, so the map 8 is surjective. The decomposition
given in Lemma 4 is the decomposition into preimages

Gc(Np)= .
T # T(Np)

8&1([T ]) (107)

To get 8&1([T ])=[G # Gc(Np) : 8(G)=T ], one only has to reverse the
above algorithm: let T be any tree. Group the vertices into sets Al of dis-
tance l from 1 (i.e., root the tree at 1). Let H*(T ) be the graph containing
all the following lines: for q�2 let % be the unique line of T connecting q
to a lower vertex q$: all lines [q", q] with q">q$ belong to H*(T ). For
l�1, all lines q, q$ with q # Al and q$ # Al belong to H*(T ).

By construction, all subsets H of H*(T ) satisfy 8(T _ H )=T, and if
G is a connected graph containing any line not in H*(T ), then 8(G){T.

C.2. The Matrix Structure

In this section, we show that the matrices M associated to the direct
resummation are band matrices and then provide examples where they
have negative eigenvalues.

We first introduce a natural ordering on the vertex set Np . Let
V0=[1], and for k�1 let Vk be the set of vertices with distance k from 1
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Fig. 1. A tree T on N8 (solid lines). The dashed lines are those lines of H*(T ) that connect
V1=[2, 3] to V2=[4, 5, 6, 7, 8].

(measured in steps when going over tree lines). V1 is ordered by the usual
ordering on N. The set V2 is ordered as follows: First, take the vertices q
with ?(q) the smallest element of V1 , and order them in a similar way as
we ordered V1 , etc. In the example shown in Fig. 1, this means that the
ordering of V2 is (4, 5, 7; 6, 8).

Recall that the lines of H*(T ) are all those that connect vertices q, q$
with q # Vk and q$ # Vk , and those that connect Vk and Vk+1 and that are
compatible with the minimality of T. The point of the above ordering is
that the second condition is simple: for instance, in the example in Fig. 1,
the only allowed lines between V1 and V2 are those connecting the set
[4, 5, 7] to 3. Connecting 6 (or 8) to 2 is not allowed by construction of
H*(T ).

In the ordering on the vertices just introduced, the matrix M (T ) thus
takes the block form (labeled by 1, 2, 3, and the sets W1=[4, 5, 7] and
W2=[6, 8])

1 s12 s13 0 0

s12 1 1 _1 0\s13 1 1 1 _2+ (108)

0 _T
1 1 1 1

0 0 _T
2 1 1

The blocks denoted by 1 are matrices with all entries equal to one. There
are 1's in the diagonal because all lines with q=q$ appear and because all
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lines from Vk to Vk appear. The matrices _ i comprise the s-factors from the
second layer of the tree.

For general trees, the matrix M (T ) is a block matrix of band form
because the only lines allowed in H*(T ) go either from Vk to Vk (diagonal
blocks) or from Vk to Vk+1 (blocks adjacent to the diagonal).

Such matrices are typically not positive: already for p=3 and the tree
T=[[1, 2], [1, 3]] (which corresponds to the left upper corner of the
matrix in (108)) and the particular values s12=1 and s13=0,

1 1 0

det \1 1 1+=&1 (109)

0 1 1

In this example, positivity is easy to repair: if all diagonal elements are
replaced by 2, the matrix is just minus the one-dimensional discrete
Laplacian, hence positive. Thus the matrix in (109) can be written as a
difference

2 1 0 1 0 0

\1 2 1+&\0 1 0+ (110)

0 1 2 0 0 1

of two Gram matrices. The first one has Gram constant - 2 by Lemma 7
and the second one Gram constant 1. Upon iteration of the application of
the Laplacian in two steps, the two Gram constants add up, so effectively,
#C is replaced by (1+- 2) #C . Similar tricks work for individual trees, but
do not seem to yield bounds that are uniform in T.
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